Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

نویسندگان

  • Kristen L. Zuloaga
  • Wenri Zhang
  • Natalie E. Roese
  • Nabil J. Alkayed
چکیده

Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs), is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS) female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15-18 month old) and young (3-4 month old) female sEH knockout (sEHKO) mice and wild type (WT) mice were subjected to 45 min middle cerebral artery occlusion (MCAO) with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24 h thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography (OMAG). Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24 h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24 h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia.

BACKGROUND AND PURPOSE Cytochrome P450 epoxygenase metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs). EETs are produced in the brain and perform important biological functions, including vasodilation and neuroprotection. However, EETs are rapidly metabolized via soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs). We tested the hypothesis that sEH gene deleti...

متن کامل

Mechanism of Protection by Soluble Epoxide Hydrolase Inhibition in Type 2 Diabetic Stroke

Inhibition of soluble epoxide hydrolase (sEH) is a potential target of therapy for ischemic injury. sEH metabolizes neuroprotective epoxyeicosatrienoic acids (EETs). We recently demonstrated that sEH inhibition reduces infarct size after middle cerebral artery occlusion (MCAO) in type 1 diabetic mice. We hypothesized that inhibition of sEH would protect against ischemic injury in type 2 diabeti...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Soluble epoxide hydrolase: a novel therapeutic target in stroke.

The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enha...

متن کامل

Neuroprotective effects of female gonadal steroids in reproductively senescent female rats.

BACKGROUND AND PURPOSE Young adult female rats sustain smaller infarcts after experimental stroke than age-matched males. This sex difference in ischemic brain injury in young animals disappears after surgical ovariectomy and can be restored by estrogen replacement. We sought to determine whether ischemic brain injury continues to be smaller in middle-aged, reproductively senescent female rats ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014